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Abstract

Imperatives like ‘Post this letter or burn it!’ or ‘Take any card!’ are
most naturally interpreted as presenting a choice between different alter-
natives. The article proposes an account of choice-offering imperatives
and of their non-standard logical properties based on the framework of
inquisitive semantics.

1 Introduction

The law of propositional logic that states the deducibility of ϕ ∨ ψ from ϕ
does not seem to be valid for imperatives (Ross’ paradox, cf. Ross [1941]).
The command (or request, advice, etc.) in (1-a) does not seem to imply (1-b),
otherwise when told the former, I would be justified in burning the letter rather
then posting it.

(1) a. Post this letter! 6⇒
b. Post this letter or burn it!

Intuitively the most natural interpretation of the second imperative is as one
presenting a choice between two actions.

(2) a. Post this letter or burn it! ⇒
b. You may post the letter and you may burn it.

Following Åquist [1965] (and Hamblin [1987]) we call these choice-offering
imperatives. Another example of a choice-offering imperative is (3-a) with an
occurence of Free Choice any which, somehow surprisingly, is licensed in this
context:

(3) a. Take any card!
b. #John took/must take any card.

Like (1-b), this imperative is naturally interpreted as presenting a choice be-
tween different alternatives.

(4) a. Take any card! ⇒
b. You may take card a, you may take card b, . . .
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Contrast (3-a) with “Take some card!”, which lacks this choice-offering inter-
pretation.

Different views on the status of the free choice inferences in (2) and (4) can
be defended: they might be taken to be purely pragmatic implicatures or to
have the status of semantic entailments. The fact that free choice inferences
are not embeddable under negation seems to argue in favor of the former view.
Imperative (5-a) cannot mean ‘Post this letter or burn it, but you may not do
both’, and (5-b) cannot mean ‘Take a card but you may not choose which’.

(5) a. Don’t post this letter or burn it!
b. Don’t take any card!

On the other hand, in positive contexts, these free choice inferences do not seem
to be cancelable as illustrated by the following two examples from Aloni [2007]
(which are modified versions of examples from Hamblin [1987] and Mastop [2005]
respectively). These examples seem to provide evidence in favor of a semantic
account.

(6) Grandma: Take any card!
Kid gets up to pick a card.

Grandma: ??? Don’t you dare take the ace!

(7) Mother: Do your homework or help your father in the kitchen!
Son goes to the kitchen.

Father: Do your homework!
Son: But, mom told me I could also help you in the kitchen!

In this article we will assume that free choice inferences in choice-offering
imperatives are matters of entailment. This will yield a ready account of ex-
amples (6) and (7), but also of Ross’ paradox in (1), and of the contrast in
grammaticality illustrated in (3). Furthermore, as it will be clear later on, we
will derive the right interpretation for the negative imperatives in (5).

Recently a number of dynamic logics for imperatives have been proposed to
account for (1) and (7) [e.g. Mastop, 2005, Veltman, 2009]. On these systems an
imperative sentence performatively changes the to-do-list of some agent. These
approaches are promising in that they derive (1) and (7) from the performative
nature of imperatives. They only discuss the propositional case though, and it
is hard, if not impossible, to extend them to the first-order case to account for
(3) and (6).

As far as we know, the only attempt to capture both (1) and (3) is Aloni
[2007]. On that account, any and or are treated as operators which introduce
sets of propositional alternatives. The imperative operator is then analyzed as a
quantifier over these sets of alternatives. Choice-offering imperatives are distin-
guished from basic imperatives in that they involve genuine sets of propositional
alternatives. The logic we will present in this article share these characteristics
with Aloni [2007], but, as we will argue, it improves on it both empirically and
conceptually.
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First of all, Aloni [2007] generates alternative propositions via a dynamic
semantics [e.g. Dekker, 2002] supplemented with a mechanism of propositional
quantification [Fine, 1970]. In the present article, instead, we use the framework
of first-order inquisitive semantics1 developed in Ciardelli [2009]. The latter for-
malism has many advantages from a logical point of view as it will become clear
later on, but it has also an important empirical motivation. In Aloni, alterna-
tive propositions are generated by dynamically active existential propositional
quantifiers in interaction with disjunction and existential individual quantifica-
tion. One of the predictions of that system is that within a static operator, i.e.
an operator that blocks anaphoric links between a term that occurs in its scope
and a pronoun outside of it [cf. Groenendijk and Stokhof, 1991], no alternatives
are generated, and, therefore, no choice-offering readings can arise. Negation
and the universal quantifiers are both examples of static operators. Aloni’s pre-
diction, however, is only borne out in the case of negation. Negative imperative
are never choice-offering (cf. example (5)), but universal one might be. For
example, (8) grants for each letter the permission to post it or burn it.

(8) For every letter, post it or burn it!

In inquisitive semantics, where the potential to generate alternatives is not
related to the dynamic nature of the scoping operator, this problem does not
arise.

Another important difference between the present account and Aloni’s sys-
tem concerns the nature of the predicted free choice inference. In Aloni [2007]
choice-offering disjunctive and existential imperatives grant the permission to
freely choose one of the relevant possibility and execute it:

(9) a. A or B! |= 3A ∧3B
b. Any A! |= ∀x3A(x)

On the present account, instead, choice offering imperatives will have the stronger
entailment that each possibility may be executed in isolation:

(10) a. A or B! |= 3(A ∧ ¬B) ∧3(B ∧ ¬A)
b. Any A! |= ∀x3∀y(A(y)↔ x = y)

As arguments in favor of (10) consider the following two examples.

Seminar Consider the following disjunctive imperative (attributed to an anony-
mous reviewer in Aloni [2007]):

(11) To pass the seminar, write a paper, give a presentation, or take an oral
exam.

1Inquisitive semantics is a young but very active area of research: see among others [Mas-
carenhas, 2009, Groenendijk, 2009, Ciardelli and Roelofsen, 2011, Groenendijk and Roelofsen,
2010], whose focus is, however, restricted to a propositional language.
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Assume one gets credit for an oral exam (obligatory) combined with either giving
a presentation or writing a paper. Imperative (11) would be misleading in the
given scenario. However, Aloni [2007] predicts the sentence to be acceptable.
On our account, where the stronger (10-a) is valid, the deviance of (11) will be
accounted for.

The next scenario from Menéndez-Benito [2005] illustrates the same point
for any-imperatives.

Canasta One of the rules of the card game Canasta is: when a player has two
cards that match the top card of the discard pile, she has two options: (i) she
can take all the cards in the discard pile or (ii) she can take no card from the
discard pile (but take the top card of the regular pile instead). Consider now
the following imperative:

(12) Take any card from the discard pile!

Intuitively, (12) would not count as command (or request, advice, etc.) to choose
option (i), contrary to what Aloni predicts. Again, by validating the stronger
(10-b), the present system will avoid this problem.

The article is structured as follows. The next section presents a semantics for
imperatives. Section 3 extends the language with modal operators and relates
imperatives to deontic 2 and 3. Section 4 draws some conclusions and section
5 indicates further lines of research.

2 Imperatives

2.1 A language for imperatives

First of all, in order to set up our semantics we need to specify a formal language
for imperatives. Of course, many choices are possible: we shall use a simple first-
order language L. The idea is that atomic formulas name basic imperatives, and
that complex imperatives may be obtained by means of the Boolean connectives
¬,∧,∨ and the standard quantifiers ∃,∀. Thus, a nullary predicate symbol p
will stand for basic imperatives such as ‘run’ or ‘sleep’, a unary symbol P (x)
for imperatives with a complement, such as ‘throw x’ or ‘kiss x’, etcetera.

Clearly, imperatives cannot be said to be true or false in a certain state of
affairs: all we can say is whether or not an agent has complied with an imperative
over a certain lapse of time. Thus, the usual first-order models for the language
L will be called, and conceived of as conducts: the idea is that a model specifies
which actions are executed (by a given agent over a certain lapse of time) and
which ones are not, rather than which things do and do not hold in a certain
state of affairs. For instance, the interpretation of a unary predicate ‘kiss x’ in a
model will represent the set of individuals kissed by the agent in that conduct.
For nullary predicate symbols, the model simply specifies whether or not they
are executed in that conduct.
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Thus, we read the classical satisfaction relation M, g |= ϕ between a model
a formula (relative to an assignment g) as “the conduct M complies with the
imperative ϕ” or “ϕ is executed in the conduct M”.

To make this precise, fix a domain D and an interpretation fD of each
function symbol in L (including constants), and call D the resulting structure.
A D-model is a first-order model for the language L based on D. We denote by
ω the set of all D-models.

Definition 2.1 (Compliance set). Relative to an assignment g into D, the
compliance set |ϕ|g of an imperative ϕ is simply the set of D-models which
comply with the imperative:

|ϕ|g = {M ∈ ω |M, g |= ϕ}

2.2 Basic and choice imperatives

The most striking and common effect of an imperative is to specify an obligation,
as in (13).

(13) Call Mark.

Additionally, as we saw in the introduction, imperatives may offer a choice, as in
(14) and in (15). In this case, we speak of choice-offering or choice imperatives.

(14) Call Andrew or Mark.

(15) Call any of your friends.

For instance, (15) requires the hearer to call at least one friend and it grants
the permission to choose a specific friend and call that friend and only that one.
Similarly for (14), where the choice is between Mark and Andrew.

In general, we shall analyze choice imperatives as conveying the obligation to
execute the imperative together with the permission to execute the imperative
in any possible way. But what exactly are the ways in which an imperative may
be executed? The following definition takes care of answering this question.

Definition 2.2 (Possibilities for an imperative). The set [[ϕ]]g of possibilities
for an imperative relative to an assignment g is defined recursively as follows:

1. [[ϕ]]g = {|ϕ|g} if ϕ is atomic;

2. [[¬ϕ]]g = ω −
⋃

[[ϕ]]g;

3. [[ϕ ∨ ψ]]g = [[ϕ]]g ∪ [[ψ]]g;

4. [[ϕ ∧ ψ]]g = {s ∩ t | s ∈ [[ϕ]]g and t ∈ [[ψ]]g};

5. [[∃xϕ]]g =
⋃

d∈D[[ϕ]]g[x7→d];

6. [[∀xϕ]]g = {
⋂

d∈D sd | sd ∈ [[ϕ]]g[x 7→d] for all d ∈ D}.
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The clauses can be read as follows: atoms denote basic imperatives; to execute
¬ϕ, one must not execute ϕ in any way; to execute ϕ ∨ ψ, one has to execute
either ϕ or ψ; to execute ϕ ∧ ψ, one has to execute both ϕ and ψ; to execute
∃xϕ, one has to execute ϕ[d/x] for some individual d; finally, to execute ∀xϕ,
one has to execute ϕ[d/x] for all individuals d.

Notice that any imperative ϕ has at least one (possibly empty) possibility.
Moreover, the following remark shows that the possibilities for an imperative
exhaust its realization set: in other words, an imperative is executed iff it is
executed in some of the ways we identified.

Remark 2.3. For any ϕ and g,
⋃

[[ϕ]]g = |ϕ|g.

It follows from this observation that [[¬ϕ]]g = ω − {|ϕ|g} = {|¬ϕ|g}. If an
imperative has only one possibility we say that it is basic, otherwise we say that
it is a choice imperative.

The following remark gives sufficient syntactic conditions on a formula to
denote a basic imperative.

Remark 2.4. For any assignment g,

1. atomic imperatives and negations are basic relative to g;

2. if both ϕ and ψ are basic relative to g, so is ϕ ∧ ψ;

3. if ϕ is basic relative to g[x 7→ d] for all d ∈ D, then ∀xϕ is basic relative
to g.

In particular, any imperative built up from atoms and negations by means of
conjunction and the universal quantifier alone is basic. This means that the only
sources of choice in the language are disjunction and the existential quantifier.
As we shall see, these logical constants mirror the natural language free-choice
items or and any.

Also, observe that double negation has the effect of collapsing all possibilities
for an imperative into a single one, corresponding to the truth-set of the formula:
[[¬¬ϕ]]g = {|ϕ|g}. Thus, the effect of double negation is to erase the choice
component specified by the imperative. We will thus call the formula ¬¬ϕ the
flattening of ϕ, and denote if by Fϕ.

Realizations As soon as the domain D is finite and each element d has a
name d, possibilities admit a syntactic counterpart which we call realizations.

Definition 2.5 (Realizations of an imperative). The set R(ϕ) of realizations
of an imperative ϕ is defined recursively as follows:

1. R(ϕ) = {ϕ} if ϕ is atomic;

2. R(¬ϕ) = {¬ϕ};

3. R(ϕ ∨ ψ) = R(ϕ) ∪R(ψ);
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4. R(ϕ ∧ ψ) = {ρ ∧ σ | ρ ∈ R(ϕ) ∧ σ ∈ R(ψ)};

5. R(∃xϕ) =
⋃
{R(ϕ[d/x]) | d ∈ D};

6. R(∀xϕ) = {
∧

d∈D ρd | ρd ∈ R(ϕ[d/x]) for all d ∈ D}.

Note that realizations do not contain disjunctions or existential quantifiers, and
thus they denote basic imperatives. Observe that even if the domain D is not
finite, realizations are equally well-defined for all formulas which do not contain
universal quantifiers.

The next lemma clarifies in what sense realizations are the syntactic coun-
terpart of possibilities.

Proposition 2.6. If realizations are defined for ϕ, then for any g,

[[ϕ]]g = {|ρ|g | ρ ∈ R(ϕ)}

As a consequence, any imperative may be written as the disjunction of its
realizations: if realizations are defined for ϕ, then [[ϕ]]g = [[

∨
R(ϕ)]]g for any g.

2.3 Semantics for imperatives

In the previous sections we have defined what it means for an imperative to
be executed in a conduct and what the ways in which an imperative may be
realized are.

But what is the effect of the utterance of an imperative? When a speaker
utters an imperative such as (13), what do the addressees learn? Certainly, not
anything about their actual conduct. Rather, they learn something about the
conduct the speaker wants them to keep; that is, they learn something about
the desire state of the speaker.

We can model a desire state as a set of conducts, which we conceive of as
the conducts required/desired/accepted by the speaker.

Definition 2.7 (Desire states). A desire state, sometimes called simply a state,
is a set of conducts.

Here a remark is in place: what an imperative refers to need not always be the
speaker’s desire state or even any actual desire state. For instance, consider the
imperative in (16).

(16) To recharge your mobile, visit our website.

In this case the imperative has nothing to do with any agent’s desires. However,
it still provides information about a state in the formal sense, i.e. about a
certain set of conducts; what set this is is specified by the initial clause: the
set of conducts that would lead the addressees to recharge their mobiles. In
general, one may regard an imperative ‘in order to do p, do q’ as stating that the
information that the imperative ‘do q’ provides is to be interpreted as regarding
the set of conducts that lead to p.
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At any rate, the task of modeling the designation of the particular desire
state at stake lies out of the scope of the present paper. What matters for
our purposes is that although what the state in question represents may differ
for imperatives like (13) and (16), this difference does not affect the way the
imperative works, the information it provides. We can thus safely think of the
state in question as the desire state of the speaker, without being in any way
committed to this assumption.

Now, what information does an imperative ϕ provide about this desire state
s? First, it provides the information that the speaker wants ϕ to be executed:
hence, that all conducts M ∈ s are such that M |= ϕ, or in other words that
s ⊆ |ϕ|.

Moreover, if ϕ is a choice imperative, it grants the permission to freely
choose one of the possibilities for ϕ and to execute that possibility and only
that. To capture this intuition we use the notion of exclusive strengthening
from Roelofsen and van Gool [2010].

Definition 2.8 (Exclusive Strengthening). If S is a set of states and s ∈ S, the
exclusive strengthening of s relative to S is the state

exc(s, S) = s−
⋃
{t ∈ S | s 6⊆ t}

The exclusive strengthening of the set S is then the set

excS = {exc(s, S) | s ∈ S}

The effect of the exclusive strengthening operation is to turn any possibility into
the corresponding ‘only that’ possibility. Now that we have a formal notion to
say ‘only’ we can clarify what the freedom of choice granted by an imperative
amounts to: the imperative ϕ informs that any element of exc[[ϕ]] is consistent
(i.e. has non-empty intersection) with the given state s. This leads to the
following definition.

Definition 2.9 (Semantics for imperatives). Relative to an assignment g, we
say that a state s justifies an imperative ϕ, and we write s, g  ϕ, in case the
following two conditions are satisfied:

Obligation s ⊆ |ϕ|g

Permission s ∩ t 6= ∅ for all t ∈ exc[[ϕ]]g

The justification set of ϕ relative to the assignment g is the set 〈ϕ〉g of states s
such that s, g  ϕ.

Of course, this notion can be presented in a dynamic fashion as follows. Upon
hearing an imperative ϕ, an agent learns that the desire state at stake is one
that justifies ϕ, i.e. lies in 〈ϕ〉.

This learning process is modeled by saying that if an agent knows that the
actual desire state lies in a certain set σ, after the utterance of ϕ the agent
shrinks down his options to σ[ϕ] = σ ∩ 〈ϕ〉.
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01 00

(a) [[p]]

11 10

01 00

(b) [[p ∨ q]]

11 10

01 00

(c) [[p ∨ q ∨ (p ∧ q)]]

11 10

01 00

(d) 〈p〉

11 10

01 00

(e) 〈p ∨ q〉

11 10

01 00

(f) 〈p ∨ q ∨ (p ∧ q)〉

Figure 1: Possibilities and justification sets

2.4 Examples

In this section we will see our system in action in some basic, simple cases.
To illustrate our points, we will often take our language to consist only of the
propositional letters (nullary predicate symbols) p and q. There are only four
models (i.e. valuations) for this language, which we can denote 11, 10, 01 and
00, where 10 is the valuation making p true and q false, and so on.

Example 2.10 (Basic imperatives). As a first example, consider any basic
closed imperative ϕ. Since [[ϕ]] = {|ϕ|}, also exc[[ϕ]] = {|ϕ|}. Now, what states
justify ϕ? First of all, a state justifying ϕ must be a subset of |ϕ|; moreover, it
must intersect any element of exc[[ϕ]], i.e. it must intersect |ϕ|. But obviously,
any non-empty subset of |ϕ| intersects |ϕ|. Hence, s  ϕ holds iff s is a non-
empty subset of |ϕ|. For instance, the justification set of the basic imperative p
is illustrated in figure 1(d).

Example 2.11 (Disjunction). Let us now consider the simplest choice impera-
tive, namely p∨ q. This is justified in a state s in case: first, p∨ q is executed in
all conducts in s; and second, there is one conduct in s in which p is executed
but not q, and another in which q is executed but not p.

It is easily verified that there are only two states in the language L = {p, q}
which justify the utterance of the imperative p ∨ q, namely s0 = {10, 01} and
s1 = {10, 01, 11}. Thus, upon hearing p ∨ q, an agent may conclude that the
desire state of the speaker is either s0 or s1. This situation is depicted in figure
1(e).

From the imperative p∨ q one learns that doing only p or only q is certainly
fine, and that doing neither p nor q is certainly not fine, while it remains un-
determined whether it is fine to do both p and q. We believe this is rightly so,
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since indeed it seems that an imperative p∨q does not allow to draw conclusions
about the acceptability of the ‘doing both’ conduct, as witnessed by the fact
that the question (17-b) does not sound redundant after (17-a).

(17) a. Go on, take a brownie or a slice of cake!
b. May I have both?

Before turning to the next example, recall that the flattening operation (i.e.
double negation) in front of an imperative collapses all possibilities into a single
one, thus disabling the choice component and turning the imperative into a
basic one.

Example 2.12 (Existential: ‘any’ and ‘some’). The behaviour of the imperative
∃xP (x) is analogous to that of a big disjunction over the elements d ∈ D.
∃xP (x) is justified in a state s in case ∃xP (x) is executed in all conducts in s
and moreover for any d ∈ D there is one conduct in s in which P (d) is executed
and for no d′ 6= d is P (d′) executed.

Thus, from the imperative ∃xP (x) one learns that they have to execute P (d)
for at least one individual d, and that for any d, executing only P (d) (where only
means not executing P (d′) for any d′ 6= d) is fine. Thus, existential quantifier
models the free-choice item any.

On the other hand, consider the flattening F∃xP (x): according to what
we saw, this is a basic imperative which merely conveys the obligation to ex-
ecute P (d) for some d, without granting permissions. Therefore, the flattened
existential models the natural language indefinite some.

Example 2.13. Now let us consider the imperative p ∨ q ∨ (p ∧ q), whose
possibilities are depicted in figure 1(c). The peculiar feature of this imperative
with respect to the previous one lies in the fact that one possibility for this
formula is included in other possibilities.

In natural language the imperative “Call Mark, or Andrew, or both” is inter-
preted as “Call only Mark, or call only Andrew, or call both”, i.e. as specifying
the obligation to call at least one of Mark and Andrew and together granting
the permission to call Andrew and not Mark, to call Mark and not Andrew, and
to call both.

Now, we defined the exclusive strengthening of a state s relative to a set of
states S by eliminating from s the indices that were already in other possibilities,
but only in those possibilities which do not include s itself. This restriction was
designed precisely to deal with imperatives like p∨q∨ (p∧q) which specify non-
maximal possibilities, and which would otherwise turn out to be contradictions.

Instead, with our definitions we obtain the expected prediction exc[[p ∨ q ∨
(p ∧ q)]] = {|p ∧ ¬q|, |¬p ∧ q|, |p ∧ q|} = exc[[(p ∧ ¬q) ∨ (¬p ∧ q) ∨ (p ∧ q)]]. Thus,
p ∨ q ∨ (p ∧ q) is justified on a state s in case s ⊆ |p ∨ q| and moreover s has
non-empty intersection with |p ∧ ¬q|, with |q ∧ ¬p| and with |p ∧ q|. It is easily
verified that the only state which satisfies these conditions is s0 = {11, 01, 10},
whence a hearer of p ∨ q ∨ (p ∧ q) learns that the desire state of the speaker is
precisely s0.
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To put it in very intuitive terms: p∨q∨(p∧q) behaves exactly like p∨q, but
it also specifies that doing both p and q is fine, whereas this is left undetermined
by p ∨ q.

11 10

01 00

(a) [[p ∨ (p ∧ q)]]

11 10

01 00

(b) [[p ∨ (p ∧ ¬q)]]

11 10

01 00

(c) exc[[p ∨ (p ∧ q)]]

11 10

01 00

(d) exc[[p∨(p∧¬q)]]

11 10

01 00

(e) 〈p ∨ (p ∧ q)〉

11 10

01 00

(f) 〈p ∨ (p ∧ ¬q)〉

Figure 2: A problem

Aside: Exclusive strengthening versus exhaustification Consider now
the following disjuctive imperative (a simplified version of example (11) from
the introduction):

(18) To pass the seminar, write a paper or give a presentation.

Suppose one gets credits for writing a paper (obligatory) with the option to
combine it with an oral presentation. In this situation the disjunctive imperative
(18) is not justified according to our semantics: for, the state at stake is not
consistent with giving a presentation without writing a paper. Formally, the
given scenario is modeled by the state s = {11, 10}, the imperative (18) by the
formula p∨q, and we see that s 6|= p∨q since {01} ∈ exc[[p∨q]] but s∩{01} = ∅.
This seems to capture precisely the reason why un utterance of (18) would be
perceived as deviant in the described situation.

The canasta example discussed in the introduction is accounted for in a sim-
ilar fashion. For all these examples it is crucial that to justify an imperative
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ϕ a state s must be consistent with any possibility in the exclusively strength-
ened value of the sentence exc[[ϕ]]g, rather than in its plain set of possibilities
[[ϕ]]g. There are, however, some potential problems with this approach. As an
illustration, consider the following two imperatives:

(19) a. Call Mark, or call both Mark and Andrew.
b. Call Mark, or call Mark but not Andrew.

Although the sets of possibilities of these two imperatives are different, their
exclusively strengthened values turn out to be the same. Therefore, (19-a) and
(19-b) are predicted to be equivalent: both grant the permission to call only
Mark or to call both Mark and Andrew (see Figure 2).

A possible solution to this problem would be to substitute the notion of
exclusive strengthening with a more general, context dependent notion of ex-
haustification. When told that “Mark and Andrew called” people normally
conclude that nobody else called. In the linguistic literature this is called an
exhaustive interpretation of the sentence. Exhaustification is a context depen-
dent notion. Which possibilities are excluded depends on the set of relevant
alternatives. If the possibility that Mary called is not relevant in the context,
from “Mark and Andrew called” we are not entitled to conclude that Mary did
not call.

In the given definition of exclusive strengthening, conducts were excluded
with respect to the possibilities of the imperative. In the following more general
notion of exhaustification, conducts are excluded with respect to the set S of
relevant possibilities given by the context.

Definition 2.14 (Exhaustification). exh(ϕ, S) = {exc(s, S) | s ∈ [[ϕ]]}

Let us model (19-a) as p∨ (p∧ q) and (19-b) as p∨ (p∧¬q). In a context in
which you wonder whether you should call Mark or Andrew, the set of relevant
possibilities is S = {p, q}. With respect to this set of relevant possibilities, the
exhaustified values of the two imperatives are as in Figure 3. By relativizing
the semantics of the imperative to exh rather than exc, we would then correctly
predict that only (19-a) grants the permission to call both Mark and Andrew.
Example (19-b) is predicted to be pragmatically anomalous in that it conveys
the same message as p (“Call Mark!”), but in a less perspicuous way. In the
remaing of the article we will however ignore exhaustivity and adopt the context
independent notion of exclusive strengthening.

2.5 Entailment

We can define entailment between imperatives in the natural way.

Definition 2.15 (Entailment, equivalence). We say that an imperative ϕ entails
an imperative ψ, and write ϕ |= ψ in case ψ is justified whenever ϕ is, that is,
in case for any state s and assignment g, s, g  ϕ implies s, g  ψ.

We say that ϕ and ψ are equivalent, in symbols ϕ ≡ ψ, in case ϕ |= ψ and
ψ |= ϕ, i.e. in case for any state s and assignment g, s, g  ϕ ⇐⇒ s, g  ψ.
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11 10

01 00

(a)
exh(p ∨ (p ∧ q), {p, q})

11 10

01 00

(b)
exh(p ∨ (p ∧ ¬ q), {p, q})

11 10

01 00

(c) exh(p, {p, q})

Figure 3: Exhaustive values

As expected, ϕ |= ψ holds iff for any set σ of states we have σ[ϕ][ψ] = σ[ϕ] (in
the update notation defined in section 2.3); this latter characterization makes it
clear that ϕ entails ψ in case ϕ provides at least as much information as ψ, and
possibly more. Spelling out the definition we obtain the following reformulation.

Proposition 2.16. An imperative ϕ entails an imperative ψ iff the following
two conditions hold:

1. entailment of obligations: |ϕ|g ⊆ |ψ|g for all g (i.e., ϕ entails ψ in classical
logic);

2. entailment of permissions: for all g, for any t ∈ exc[[ψ]]g there is s ∈
exc[[ϕ]]g with s ⊆ t.

From this reformulation it is easy to derive the following corollary.

Corollary 2.17. Two imperatives ϕ and ψ are equivalent precisely in case
|ϕ|g = |ψ|g and exc[[ϕ]]g = exc[[ψ]]g for any assignment g.

Contradictory imperatives are defined in the natural way as imperatives which
are never justified.

Definition 2.18 (Contradictions). We say that an imperative ϕ is a contradic-
tion in case 〈ϕ〉g = ∅ for all g. If ϕ is not a contradiction we say it is consistent.

Remarks

1. Entailment between basic imperatives is utterly classical. For instance,
∀xP (x) |= P (a).

2. For any consistent imperative ϕ, ϕ ≡ Fϕ ⇐⇒ ϕ is basic.

3. We avoid the traditional problem in the theory of imperatives, namely
Ross’ paradox. The imperative “call Andrew” does not entail “call An-
drew or Mark” for the very intuitive reason that the former imperative is
justified also (and indeed only) in states in which calling Mark instead of
Andrew is not an option.
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4. Any formula ϕ entails its flattening Fϕ, since the obligation specified by
Fϕ is already part of the meaning of ϕ. In particular, ∃xϕ |= F∃xϕ for
any ϕ, that is, ‘any’ entails ‘some’.

5. Viceversa, not granting any permission, a basic imperative can never entail
a choice imperative. In particular, in general we have:

• ‘and’ does not entail ‘or’: p ∧ q 6|= p ∨ q;
• ‘every’ does not entail ‘any’: ∀xP (x) 6|= ∃xP (x);

• ‘some’ does not entail ‘any’: F∃xP (x) 6|= ∃xP (x).

6. p ∨ q ∨ (p ∧ q) ≡ (p ∧ ¬q) ∨ (¬p ∧ q) ∨ (p ∧ q) |= p ∨ q.

7. p ∨ (p ∧ q) ≡ (p ∧ ¬q) ∨ (p ∧ q) ≡ p ∧ (q ∨ ¬q).

3 Deontics

3.1 Syntax and semantics of deontics

We have seen how imperatives can be used to provide information about desire
states, i.e. sets of conducts. Of course, there is also another language which
stands as a natural candidate to talk about such objects, namely a predicate
modal language in which any atom lies in the scope of exactly one modality. In
this section we will consider this language and relate it with imperatives on the
one hand, and with the deontics ‘may’ and ‘must’ on the other.

Definition 3.1 (Deontics). The set of deontics is defined as the smallest set
such that:

1. if ϕ is an imperative, 3ϕ is a deontic;

2. if α and β are deontics, so are ¬α, α ∨ β, α ∧ β, ∃xα and ∀xα.

As customary in modal logic, we shall use 2ϕ as a shorthand for ¬3¬ϕ. This
language will be interpreted in the natural way: 3ϕ will be judged justified in
a state if ϕ is consistent with s, and connectives and quantifiers will behave
classically.

Definition 3.2 (Semantics for deontics). Let s be a state and let g be an
assignment. The justification relation  is defined as follows:

1. s, g  3ϕ in case s ∩ |ϕ|g 6= ∅;

2. the inductive clauses defining s, g  α for complex αs are the classical
ones.

Entailment and equivalence are defined like for imperatives, and it is also per-
fectly meaningful to talk of an entailment or an equivalence between a deontic
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and an imperative. However, in order to make things run smooth in this com-
parison –which will be the subject of the next section– we should restrict our
semantics to non-empty states.

Indeed, the empty state represents the inconsistent desire state, in which
no conduct is considered acceptable. It seems reasonable to think that when
interpreting an imperative, one assumes the relevant desire state to be consistent
-otherwise what are we talking about?

This came by itself for imperatives, since according to our definitions no
imperative is justified on the empty state anyway. However, since deontics
of the shape 2ϕ are justified on ∅, we should now be explicit. This minor
modification is also needed to make definition 3.5 work well for imperatives.

3.2 Imperatives as deontics

Recall from section 2.2 that if the domainD is finite we have a finite, well-defined
set R(ϕ) of formulas called realizations which express the possibilities for ϕ. In
this section we will see that in this case, imperatives are a particular class of
deontics, in the sense that they can be translated into deontics with the same
semantic content. Notice that this case covers all propositional imperatives.

The first step is to specify how the semantic operation of exclusive strength-
ening may be reproduced at the syntactic level.

Definition 3.3 (Exclusive Strengthening). If Φ is a finite set of formulas and
ϕ ∈ Φ, we put

1. exc(ϕ,Φ) = ϕ ∧
∧
{¬ψ |ψ ∈ Φ and ϕ does not classically entail ψ}

2. excΦ = {exc(ϕ,Φ) |ϕ ∈ Φ}
As expected, we have exc[[ϕ]]g = {|ρ|g | ρ ∈ excR(ϕ)}.
Proposition 3.4. If the domain D is finite, then for any formula ϕ,

ϕ ≡ 2ϕ ∧
∧
{3ρ | ρ ∈ excR(ϕ)}

This representation makes it even clearer that the meaning of an imperative
ϕ consists of two components: an obligation 2ϕ and a permission

∧
{3ρ | ρ ∈

excR(ϕ)}. Observe that the obligation component of an imperative ϕ coincides
with its flattening: 2ϕ ≡ Fϕ.

As an example, we have the following equivalence, in which the decomposi-
tion into obligation and permission is made explicit for a disjunctive imperative.

(20) ϕ ∨ ψ ≡ 2(ϕ ∨ ψ) ∧3(ϕ ∧ ¬ψ) ∧3(ψ ∧ ¬ϕ)

In some cases (but not in general) we may find a deontic formula expressing an
imperative independently of the size of the domain. For instance, the quantifier
analogue of the equivalence (20) holds in general2:

2Strictly speaking, here we are cheating. For, our language does not include the equality
predicate, and thus we cannot formulate the expression ∀y 6= x(¬Py). However, this problem
can be easily overcome, for instance by introducing directly quantifiers ∃x 6= y,∀x 6= y in the
syntax of imperatives. The associated semantic clauses are straightforwardly formulated.
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(21) ∃xP (x) ≡ 2∃xP (x) ∧ ∀x3(Px ∧ ∀y 6= x(¬Py))

Now the time has come to be more precise about what it means for a deontic
to be an obligation or a permission. Intuitively, obligations carry the informa-
tion that the desire state s in question is at least as narrow (recall that the
narrower a state, the more demanding!) as to entail that certain actions must
be executed, while permissions carry the information that s is at least as large
as to be consistent with the execution of certain actions. Thus, obligations are
downward persistent, while permissions are upwards persistent. We can take
these persistency properties as definition of obligations and permissions.

Definition 3.5 (Obligations and permissions).

• We say that a deontic α is an obligation if it is downward persistent, i.e.
if for all states s ⊆ t and assignments g, if t, g  α also s, g  α.

• We say that a deontic α is a permission if it is upward persistent, i.e. if
for all states s ⊆ t and assignments g, if s, g  α also t, g  α.

Examples of permissions and obligations are easily given: deontics of the shape
3ϕ are always permissions, and deontics of the shape 2ϕ are always obligations.
Moreover, the next proposition states that both classes are closed under the
positive logical constants (∨,∧,∃ and ∀) while negation turns obligations into
permissions and viceversa.

Proposition 3.6. 1. If α and β are obligations (resp. permissions), then so
are α ∨ β, α ∧ β, ∃xα and ∀xα.

2. If α is an obligation (resp. permission) then ¬α is a permission (resp.
obligation).

Obviously, the notions of permission and obligation also apply to imperatives.
Quite naturally, a basic imperative is always an obligation; in fact, something
slightly stronger can be said.

Remark 3.7. A consistent imperative is an obligation iff it is basic.

Thus, also a consistent imperative ϕ is an obligation iff ϕ ≡ Fϕ ≡ 2ϕ. On the
other hand, there are imperatives which are permissions.

Remark 3.8. All classical tautologies are permissions. That is, any imperative
ϕ such that |ϕ|g = ID for all g is a permission.

That imperatives may be used to grant permissions may strike as odd, but
as a matter of fact an imperative like “Call Mark or don’t call him” (usually
accompanied by “do as you wish” or similar) is not a triviality: it provides the
information that both options are acceptable, which is exactly what we predict
for p ∨ ¬p.
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3.3 ‘May’ and ‘must’

We have seen that an imperative ϕ can be decomposed as the conjunction of
two deontics, an obligation 2ϕ ≡ Fϕ and a permission

∧
{3ρ | ρ ∈ excR(ϕ)}.

One hypothesis that we could make is that these two deontics mirror the natural
language expressions ‘you must do ϕ’ and ‘you may do ϕ’. The idea is to model
‘must’ as just a plain box, as ‘may’ as the operator

may(ϕ) :=
∧
{3ρ | ρ ∈ excR(ϕ)}

The problem with this is that the resulting may is defined only under the
annoying restriction of finite domains. But nothing prevents us from taking
may as a primitive operator, with its own semantics.

Definition 3.9 (Semantics of may).

s g may(ϕ) ⇐⇒ s ∩ t 6= ∅ for all t ∈ exc[[ϕ]]g

Thus, for instance, may(p) simply provides the information that the relevant
state is consistent with doing p; may(p ∨ q) provides the information that it is
consistent with doing only p and only q; and may(∃xPx) provides the informa-
tion that it is consistent with choosing an element d ∈ D and doing Px only for
x = d. Formally, we have the following equivalences.

(22) a. may(p) ≡ 3p
b. may(p ∨ q) ≡ 3(p ∧ ¬q) ∧3(q ∧ ¬p)
c. may(∃xPx) ≡ ∀x3(Px ∧ ∀y 6= x(¬Py))

With the operator may in place, the representation of an imperative as a con-
junction of an obligation and a permission becomes a general fact.

Proposition 3.10. For any imperative ϕ,

• ϕ ≡ 2ϕ ∧may(ϕ);

• 2ϕ is an obligation;

• may(ϕ) is a permission.

This account of must and may has the merit of predicting the free choice
nature of permissions in contrast to the ‘flatness’ of obligations and the difference
between ‘may’ and ‘must’ with respect to their licensing of free choice any (along
the lines of Aloni [2007]).

(23) a. You may call John or Mary ⇒ You may call (only) John and you
may call (only) Mary.

b. You must call John or Mary 6⇒ You may call (only) John and you
may call (only) Mary.

(24) a. You may call anyone.
b. #You must call anyone.
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4 Conclusion

We have presented a semantics for imperatives in the framework of inquisitive
semantics [Groenendijk and Roelofsen, 2009, Ciardelli, 2009]. Basic free choice
inferences follow as entailments. Ross’ paradox in (1) is explained. The con-
trast in grammaticality illustrated in (3) follows along the lines of Aloni [2007].
Negative imperatives are never choice offering on this account, while universal
ones might be (contra Aloni [2007]). Via the notion of exclusive strengthening
we further improved on Aloni’s predictions with respect to examples (11) and
(12).

5 Further work

The aim of this article was to propose the core of a semantics for imperatives.
Several natural lines of research stemming from this bulb can be envisaged.

First of all, we said at the beginning that in this context formulas denote
actions, not propositions. However, we then stuck to a basic modeling of actions
by means of first-order models. It would be interesting to investigate more
refined approaches, in particular in order to incorporate sequentiality.

A related problem is that of dealing with the interaction between imperatives
and indicatives, such as in conditional imperatives of the form “if µ then ϕ”,
where µ is an indicative and ϕ is an imperative.

Also, we remarked in section 2.3 that the desire state which is relevant for
the interpretation of an imperative may be determined by means of expressions
like “in order to . . . ” and similar, see example (16). However, our simple model
did not include any mechanism to account for such constructions.

The logic associated to this system remains to be investigated, as well as the
empirical value of the account of deontic may and must suggested in section
3.3.

Finally, our semantics does not explain why, unlike deontics, imperatives
only admit a performative reading and lack a descriptive one (see Schwager
[2006] for a possible explanation).
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