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Introduction

I Free choice (fc) inferences:
(1) a. Wide scope fc: 3a ∨3b ; 3a ∧3b

b. Narrow scope fc: 3(a ∨ b) ; 3a ∧3b

I Classical examples:
(2) Deontic fc [Kamp 1973]

a. You may go to the beach or (you may go) to the cinema.
b. ; You may go to the beach and you may go to the cinema.

(3) Epistemic fc [Zimmermann 2000]

a. Mr. X might be in Victoria or (he might be) in Brixton.
b. ; Mr. X might be in Victoria and he might be in Brixton.

I Long-standing debate on the status of fc inferences:
I fc inferences as pragmatic implicatures

[Schulz, Alonso-Ovalle, Aloni, Klinedinst, Fox, Franke, Chemla, . . . ]
I fc inferences as semantic entailments

[Zimmermann, Geurts, Aloni, Simons, Barker, Asher & Bonevac, . . . ]

I Goal
I Study notions of disjunction proposed in state-based semantics with

emphasis on their potential to account for fc as a semantic or a
pragmatic inference



Why state-based semantics?

I State-based semantics (sbs): formulas interpreted wrt to a set of
possible valuations rather than an individual valuation

I Particularly suitable to capture the inherent epistemic and/or
alternative-inducing nature of disjunctive words in natural language

On disjunction and uncertainty

I In languages lacking explicit or, disjunctive meaning expressed by
adding a suffix/particle expressing uncertainty to the main verb:

(4) Johnš
John-nom

Bilľs
Bill-nom

v?aawuumšaa.
3-come-pl-fut-infer

‘John or Bill will come’

(5) Johnš
John-nom

Bilľs
Bill-nom

v?aawuum.
3-come-pl-fut

‘John and Bill will come’ [Maricopa, Gil 1991, p. 102]



Outlook

I The paradox of free choice permission
I Pragmatic and semantic solutions

I Three notions of disjunction in state-based semantics:

1. Classical disjunction: ∨1

2. Disjunction in team/assertability logic: ∨2

3. Disjunction in inquisitive/truthmaker semantics: ∨3

I Three strategies for fc:

A. Pragmatic account of fc employing ∨1;
B. Semantic account of fc employing ∨2;
C. Semantic account of fc employing ∨3.

I Focus on strategy B:
I System B: A semantic account of narrow & wide scope fc using an

enriched version of ∨2.

I Conclusion and future work



The paradox of free choice
I Free choice permission in natural language:

(6) You may (A or B) ; You may A

I But (7) not valid in standard deontic logic (von Wright 1968):

(7) 3(α ∨ β)→ 3α [Free Choice Principle]

I Plainly making the Free Choice Principle valid, for example by
adding it as an axiom, would not do (Kamp 1973):

(8) 1. 3a [assumption]
2. 3(a ∨ b) [from 1, by modal addition]
3. 3b [from 2, by free choice principle]

I The step leading to 2 in (8) uses the following valid principle:

(9) 3α→ 3(α ∨ β) [Modal Addition]

I Natural language counterpart of (9), however, seems invalid, while
natural language counterpart of (7) seems to hold, in direct
opposition to the principles of deontic logic:

(10) You may A 6; You may (A or B)



Reactions to paradox

I Paradox of Free Choice Permission: with extension to wide scope fc

(11) 1. 3a [assumption]
2. 3(a ∨ b) / 3a ∨3b [from 1, by (modal) addition]
3. 3b [from 2, by wide/narrow scope fc principle]

I Pragmatic solutions: step leading to 3 unjustified, free choice is
merely a pragmatic inference, a conversational implicature

I Semantic solutions: fc inferences as semantic entailments, step
leading to 3 justified, while step leading to 2 no longer valid

I Today: pragmatic and semantic accounts of fc
I System B (a semantic account): (modal) addition no longer valid

I Free choice: semantics or pragmatics?
I Once we bring indefinites into the picture a purely pragmatic or a

purely semantic approach to fc is untenable;
I (Canonical) arguments for/against semantic/pragmatic approaches

are inconclusive.



Free choice: semantics or pragmatics?
Argument in favour of pragmatic account of fc disjunction

I Free choice effects systematically disappear in negative contexts:

(12) You are not allowed to eat the cake or the ice-cream.

a. ≡ ¬3(a ∨ b) ≡ ¬3a ∧ ¬3b
b. 6≡ ¬(3a ∧3b)

(12) never means (12-b), as would be expected if free choice effects
were semantic entailments rather than pragmatic implicatures
(Alonso-Ovalle 2005).

Is this argument really conclusive?

I Our semantic system B will account for the facts in (12);

I Any pragmatic system which predicts the availability of embedded
fc implicatures (like Chierchia, Fox) needs adjustments to account
for these facts.

I Comparison:
I Fox, Chierchia: non-cancellable inference ⇒ embeddable
I System B: fc as non-cancellable, but non-embeddable inferences



State-based semantics
I In a state-based semantics formulas are interpreted wrt states (sets

of possible worlds) rather than single possible worlds

Language

φ := p | ¬φ | φ ∧ φ | φ ∨ φ | 3φ

where p ∈ A.

States

I A state s is a set of possible worlds;

I Logical space for A = {a, b}:

wab wa

wb w∅



Basic semantic clauses

s |= p iff ∀w ∈ s : w(p) = 1 [p true in every world in s]

s |= ¬φ iff ∀w ∈ s : {w} 6|= φ [φ ‘false’ in every world in s]

s |= (φ ∧ ψ) iff s |= φ & s |= ψ [both φ & ψ supported in s]

Entailment

I φ |= ψ iff ∀s : s |= φ ⇒ s |= ψ.

Distributivity

I φ is distributive, if ∀s : s |= φ ⇔ ∀w ∈ s : {w} |= φ.

Facts

I p, ¬φ are distributive;

I ∅ |= φ, if φ is distributive;

I So far this logic is equivalent to classical propositional logic.



Three notions of disjunction

s |= (φ ∨1 ψ) iff ∀w ∈ s : {w} |= φ or {w} |= ψ (classical/dynamic semantics)

s |= (φ ∨2 ψ) iff ∃t, t′ : t ∪ t′ = s & t |= φ & t′ |= ψ (team/assertability logic)

s |= (φ ∨3 ψ) iff s |= φ or s |= ψ (inquisitive/truthmaker semantics)

Facts

1. (φ ∨1 ψ) ≡ ¬(¬φ ∧ ¬ψ)

If φ, ψ are distributive,

2. (φ ∨1 ψ) ≡ (φ ∨2 ψ)

3. (φ ∨3 ψ) |= (φ ∨1/2 ψ), but (φ ∨1/2 ψ) 6|= (φ ∨3 ψ)

Counterexample

wab wa

wb w∅

Figure: {wa,wb} |= (a ∨1/2 b), but {wa,wb} 6|= (a ∨3 b)



Three notions of disjunction

s |= (φ ∨1 ψ) iff ∀w ∈ s : {w} |= φ or {w} |= ψ (classical/dynamic semantics)

s |= (φ ∨2 ψ) iff ∃t, t′ : t ∪ t′ = s & t |= φ & t′ |= ψ (team/assertability logic)

s |= (φ ∨3 ψ) iff s |= φ or s |= ψ (inquisitive/truthmaker semantics)

Different conceptualisations for different notions of disjunction

I ∨1/2 makes sense if s |= φ reads as

I “agent in state s has enough evidence to assert φ” (assertability)

I ∨3 makes sense if s |= φ reads as

I “φ is true because of fact s” (truthmaker semantics)
I “s contains enough information to resolve φ” (inquisitive semantics)

wab wa

wb w∅

(a) 6|= (a ∨3 b)

wab wa

wb w∅

(b) |= (a ∨3 b)



Three notions of disjunction

s |= (φ ∨1 ψ) iff ∀w ∈ s : {w} |= φ or {w} |= ψ (classical/dynamic semantics)

s |= (φ ∨2 ψ) iff ∃t, t′ : t ∪ t′ = s & t |= φ & t′ |= ψ (team/assertability logic)

s |= (φ ∨3 ψ) iff s |= φ or s |= ψ (inquisitive/truthmaker semantics)

Different semantic contents generated by different notions
Let φ, ψ be distributive and logically independent.

1. {s | s |= φ ∨3 ψ} is inquisitive, i.e. it contains more than one maximal
state, aka alternative;

2. {s | s |= φ ∨1/2 ψ} is not inquisitive.

wab wa

wb w∅

(c) classical: a ∨1/2 b

wab wa

wb w∅

(d) inquisitive: a ∨3 b



Three notions of modality

s |= 31φ iff ∀w ∈ s : R→(w) ∩ info(φ) 6= ∅ (classical)

s |= 32φ iff s ∩ info(φ) 6= ∅ (state-based)

s |= 33φ iff ∀w ∈ s : ∀t ∈ alt(φ) : R→(w) ∩ t 6= ∅ (alternative-sensitive)

Auxiliary notions: R→(w) = {v | wRv}; info(φ) = {w | {w} |= φ};
alt(φ) = {s | s |= φ & ¬∃s′ : s′ |= φ & s ⊂ s′}.

1. 31 is a classical modal operator interpreted wrt a relational
structure;

2. 32 proposed for epistemic modals (Veltman 1981, Yalcin 2007):

(13) #It might be raining but it is not raining.

I Epistemic contradiction: 32φ ∧ ¬φ |= ⊥
I Non-veridical: 32φ 6|= φ

3. 33 motivated by fc phenomena (Aloni 2007):
I If φ is inquisitive, it generates free choice effects. Otherwise, 33

behaves classically:
I No modal contradiction: 33φ ∧ ¬φ 6|= ⊥
I Non-veridical: 33φ 6|= φ
I . . .



Some facts
Facts concerning distributivity

I State-based 32φ is not distributive

I Classical 31φ and alternative-sensitive 33φ are distributive

Facts concerning disjunction

I If φ, ψ are distributive, (φ ∨1 ψ) ≡ (φ ∨2 ψ); (φ ∨3 ψ) |= (φ ∨1/2 ψ)

I (φ ∨2 ψ) 6|= (φ ∨1 ψ)
Counterexample: [wa,w∅,wb] |= (32a ∨2 32b), but [wa,w∅,wb] 6|= (32a ∨1 32b)

I (φ ∨1/3 ψ) 6|= (φ ∨2 ψ)
Counterexample: [wa] |= (32a ∨1/3 32b), but [wa] 6|= (32a ∨2 32b)

wab wa

wb w∅

(e) 6|= 32a ∨1 32b

wab wa

wb w∅

(f) 6|= 32a ∨2 32b



Facts about free choice

I ∨1 with 31 generate classical modal logic (no free choice effects)

I Assertability ∨2 with state-based 32 gives us wide scope fc (Hawke
& Steiner-Threlkeld 2016):

32a ∨2 32b |= 32a ∧32b

32(a ∨2 b) 6|= 32a ∧32b

I Inquisitive ∨3 with alternative-sensitive 33 gives us narrow scope fc
inference (Aloni 2007):

33(a ∨3 b) |= 33a ∧33b

33a ∨3 33b 6|= 33a ∧33b

I But problems under negation:

¬(32a ∨2 32b) 6|= ¬32a ∧ ¬32b

¬33(a ∨3 b) 6|= ¬33a ∧ ¬33b



Results so far

1. Classical ∨1 + 31: no fc inference

2. Assertability ∨2 + 32: only WS epistemic fc with negation problem

3. Inquisitive ∨3 + 33: only NS fc with negation problem

Desiderata

I An account of narrow and wide scope fc inferences;

I For epistemic and deontic modals;

I Well-behaving under negation.

Three strategies

I Strategy A: Extend 1 with a pragmatic account of fc;

I Strategy B: Extend 2 with an account of NS fc;

I Strategy C: Extend 3 with an account of WS fc.

Today focus on strategy B

I System B: a semantic account of narrow scope and wide scope fc
using enriched version of ∨2



Strategy C: fc in Inquisitive Semantics
I Or 7→ ∨3 (inquisitive)
I Modals 7→ 33 (alternative-sensitive)

wab wa

wb w∅

(g) a ∨3 b

wab wa

wb w∅

(h) ¬¬(a ∨3 b)

Relevant results

I Narrow scope fc derived as entailment: 33(a ∨3 b) |= 33a ∧33b

I Ways to address the negation problem:

1. Ambiguity + strongest meaning hypothesis (e.g. Aloni 2007)
2. Adopt a bilateral system (Roelofsen & Groenendijk, Willer, Fine)

I But no ready account of wide scope fc:
I Epistemic WS fc can be derived by adding semantic structure

(Ciardelli et al 2009). But so far no account of deontic WS fc.



Strategy A: fc in state-based pragmatics
I Or 7→ ∨1 (classical)
I Deontic modals 7→ 31 (relational)
I Epistemic modals 7→ 32 (state-based)

wab wa

wb w∅

(i) opt(a ∨1 b)

wab wa

wb w∅

(j) opt(32(a ∨1 b))

Implicatures in a state-based semantics

I Implicatures generated via calculation of optimal states
I Implicatures of φ: what holds in any state in opt(φ) (Schulz 2005)

(14) φ; ψ iff ∀s ∈ opt(φ) : s |= ψ and φ 6|= ψ

I Algorithms to compute opt(φ) based on Gricean principles and/or
game theoretical concepts (Aloni 2007, Franke 2009, 2011)

I Incorporation of implicatures in terms of +I operation (Aloni 2012)



Strategy A: fc in state-based pragmatics
I Or 7→ ∨1 (classical)
I Deontic modals 7→ 31 (relational)
I Epistemic modals 7→ 32 (state-based)

wab wa

wb w∅

(k) opt(a ∨1 b)

wab wa

wb w∅

(l) opt(32(a ∨1 b))

Relevant results

I Narrow scope epistemic and deontic free choice derived as
implicatures for both 3 and 2 (well behaving under negation);

I Only deontic fc as embeddable implicatures (Aloni & Franke 2012):

I Prediction confirmed by experimental data (Chemla, Geurt et al) and
cross-linguistic data on polarity items (Aloni & Port, Fălăuş, Crnic̆)

I But no account of WS fc (unless we add covert syntactic structure).



Back to Strategy B

I ∨2 + 32 gave us wide scope fc (Hawke & Steiner-Threlkeld 2016), but:

1. No narrow scope fc;
2. Problems under negation;
3. Wide scope fc only derived for epistemic modals (32 satisfies

epistemic contradiction: 32φ ∧ ¬φ |= ⊥)
4. Combination ∨2 + 32 however not really good for epistemic modals

either: ¬32a ∨2 ¬32b compatible with 32a ∧32b

wab wa

wb w∅

(m) |= ¬32a∨2 ¬32b

I System B attempts to solve all of these problems



System B: semantic account of wide and narrow scope fc

Disjunction

I Adopt an enriched version of ∨2 (non-empty disjunction): ⇒ ∨
I A state s supports a disjunction (φ ∨ ψ) iff s can be split into two

non-empty substates, each supporting one of the disjuncts, e.g.

wab wa

wb w∅

(n) |= (a ∨ b)

wab wa

wb w∅

(o) 6|= (a ∨ b)

I [wa,wb], [wab] support (a ∨ b);
I but [wa] no longer supports (a ∨ b) [⇐ crucial for narrow scope fc]



System B: semantic account of wide and narrow scope fc

Negation facts

I To account for negation facts we adopt a bilateral system:

I s ` φ interpreted as “agent in s has enough evidence to assert φ”;
I s a φ interpreted as “agent in s has enough evidence to reject φ”.

Modality
I A relational (state-based) notion of modality:

M, s ` 3φ iff ∀∃w ∈ s : M,R→(w) ∩ info(φ) ` φ
M, s a 3φ iff ∀∃w ∈ s : M,R→(w) a φ

I Deontic vs epistemic modals:
I Epistemics: R is state-based
I Deontics: R is possibly indisputable (e.g. in performative uses)

Outlook of results

I Narrow scope fc derived because relevant embedded state has to
support an enriched disjunction

I Wide scope fc derived, if R indisputable [state-based ⇒ indisput.]

I Epistemic contradiction derived, if R state-based [epistemics]



System B: definitions

Language

φ := p | ¬φ | φ ∧ φ | φ ∨ φ | 3φ

where p ∈ A.

Models

I M = 〈W ,R,S ,V 〉, where W is a set of worlds, R is an accessibility
relation, S is a set of states (subsets of W ), and V is a
world-dependent valuation function for A

State-based constraints on accessibility relation

I R is indisputable in M iff ∀s ∈ SM : ∀w , v ∈ s : R→(w) = R→(v)
7→ agents are fully informed about R

I R is state-based in M iff ∀s ∈ SM : ∀w ∈ s : R→(w) = s
7→ all and only worlds in s are accessible within s

where R→(w) = {v | wRv}



System B: definitions

Semantic clauses
[M = 〈W ,R,S ,V 〉, s, t, t ′ ⊆W ]

M, s ` p iff ∀∃w ∈ s : V (w , p) = 1

M, s a p iff ∀∃w ∈ s : V (w , p) = 0

M, s ` ¬φ iff M, s a φ
M, s a ¬φ iff M, s ` φ

M, s ` φ ∧ ψ iff M, s ` φ & M, s ` ψ
M, s a φ ∧ ψ iff ∃t, t ′ : t ∪ t ′ = s & M, t a φ & M, t ′ a ψ

M, s ` φ ∨ ψ iff ∃t, t ′ : t ∪ t ′ = s & M, t ` φ & M, t ′ ` ψ
M, s a φ ∨ ψ iff M, s a φ & M, s a ψ

M, s ` 3φ iff ∀∃w ∈ s : M,R→(w) ∩ info(φ) ` φ
M, s a 3φ iff ∀∃w ∈ s : M,R→(w) a φ

where R→(w) = {v | wRv}



System B: definitions

Entailment

I Strong entailment: support-entailment + rejection-entailment

φ |=S ψ iff ∀M, s ∈ SM : s ` φ ⇒ s ` ψ & s a ψ ⇒ s a φ

I Weak entailment: support-entailment + dismissal-entailment

φ |= ψ iff ∀M, s ∈ SM : s ` φ ⇒ s ` ψ & s a ψ ⇒ s 6` φ



System B: facts about modals
I We derive narrow scope and wide scope fc as (weak) entailments:

1. 3(a ∨ b) |= 3a ∧3b
2. 3a ∨3b |=S 3a ∧3b [if R is indisputable]

I Epistemic vs deontic modals:

I Deontic modals: R typically indisputable in performative uses

(15) We may either eat the cake or the ice-cream. [+fc, narrow]

(16) Either we may eat the cake or the ice-cream. [–fc, wide]

(17) You may eat the cake or you may eat the ice-cream.
[+fc, wide] (Fox 2007 & Zimmermann 2000)

I Epistemic modals: R is state-based, therefore always indisputable

(18) He might either be in London or in Paris. [+fc, narrow]

(19) He might be in London or he might be in Paris. [+fc, wide]

(20) ?Either he might be in London or in Paris.

(21) #It might be raining and it is not raining.

I We derive epistemic contradiction, if R is state-based:

3. 3a ∧ ¬a |= ⊥ [if R is state-based]



System B: more facts about fc

I fc effects are more fine-grained than in inquisitive semantics:

1. 3(a ∨ (a ∧ b)) |= 3a ∧3(a ∧ b)
2. 3a ∨3(a ∧ b) |=S 3a ∧3(a ∧ b) [if R is indisputable]

I fc effects also for plain disjunction and 2:

3. (a ∨ b) |= 3a ∧3b [if R is state-based]
4. 2(a ∨ b) |= 3a ∧3b (2 ≡ ¬3¬)

I fc effects disappear under negation:

5. ¬3(a ∨ b) |= ¬3a ∧ ¬3b
6. ¬(3a ∨3b) |= ¬3a ∧ ¬3b
7. ¬(a ∨ b) |=S ¬a ∧ ¬b

I But, behaviour under negation is postulated rather than predicted:
I Allowing to pre-encode what should happen under negation, bilateral

systems are more descriptive than explanatory (Cardelli)



System B: some logical properties

I Double negation law:
I φ ≡ ¬¬φ

I De Morgan laws:
I ¬(φ ∨ ψ) ≡ ¬φ ∧ ¬ψ
I ¬(φ ∧ ψ) ≡ ¬φ ∨ ¬ψ

I Logic is highly non-standard, e.g. we lose atomic addition:
I a 6|= (a ∨ b)

For comparison

I Hawke & Steiner-Threlkeld 2016:
I a |=HST (a ∨ b)
I 3a 6|=HST (3a ∨3b)

I Aloni 2007:
I φ |=A (φ ∨ ψ)
I 3a 6|=A 3(a ∨ b)



Summary

I Three notions of disjunction in state-based semantics:

1. Classical: ∨1

2. Team/assertability logic: ∨2

3. Inquisitive/truthmaker semantics: ∨3

I System B: semantic account of fc using an enriched version of ∨2:

I Narrow scope fc as entailments (well-behaving under negation)
I Wide scope fc as entailments (dependent on accessibility relation)
I fc effects also for plain disjunction and under 2

I Other strategies lacked a ready account of wide scope fc:
I Strategy A: classical ∨1 + state-based pragmatics

I narrow scope fc as implicatures (both 3 and 2)
I only deontic fc as embeddable implicature
I no account of wide scope fc (unless we add syntactic structure)

I Strategy C: inquisitive ∨3 + alternative-sensitive 33

I narrow scope fc as entailments
I no account of wide scope fc (unless we add semantic structure)

Future work
I Experimentally test predictions [January 2016, Alexandre Cremers]

I Logical properties of System B;

I . . .
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